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Abstract. Requirements Engineering (RE) often proceeds with little 
mention of risk. RE discourse instead covers topics such as 
stakeholders, goals, scenarios, qualities and measurements (acceptance 
criteria). Only in specialisms such as safety and security engineering is 
risk commonly analysed, in the form of hazards and threats 
respectively. Yet all of RE, indeed all of Systems and Software 
Engineering, exists only to mitigate project risk. This paper revisits the 
reasons why that is so, unpacks ways that risk can be treated, lists 
ways that RE handles risk, and reflects on lessons from this analysis.  
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1. Introduction  

After a talk on the elements of requirements that I gave at REFSQ some years 
ago, Martin Glinz asked why I had not mentioned risk. To be strictly fair, I had 
briefly mentioned Risk Models, as one of at least 8 ways to document rationale 
[1]. But more importantly, I had taken in with my mother’s milk as a DOORS 
novice that RE was all about risk: that everything we did was there to control 
and reduce risk; it was the purpose of the whole of Systems Engineering (SE), 
indeed; it was what we taught people in the first section of any course on RE or 
SE. Everyone in industry was well aware that projects could and regularly did 
fail. Back in 1995, the Standish Group had written their infamous “Chaos 
Report” [2]. Richard Stevens, the inventor of the DOORS requirements 
traceability tool, had insisted on starting our book with a table based on Standish 
giving the reasons for project failure [3]. In short, I hadn’t talked about it 
because it seemed too obvious. It was part of the woodwork, not an item on the 
workbench to be examined and discussed. It was the invisible cultural element 
that everybody that I worked with “knew” but never talked about. As Edgar 
Schein says, culture consists of the shared, unspoken assumptions held by a 
group and learnt through experience. [4]  

With all this tacit knowledge hanging over me, I mumbled that I had 
mentioned risk; stammered something about RE being all about risk, and that of 
course you could model it; and stopped. Of course, I should have asked Martin 
to say how he thought risk fitted into the bigger picture of requirements. But 
then, he has written and spoken about risk on various occasions. [5][6]  

The lesson, naturally, is that when Martin asks a question, it’s bound to be a 
penetrating one. What is the relationship between risk and requirements? How 
should risk be represented in a requirements model, in a project’s 
documentation? Do we actually understand in a practical way how to deal with 
risk in all its forms, or is our knowledge hidden away in an unread Risk 
Register? How, in fact, do theory and practice join up around risk, if at all? What 
would be the “staircase wit” [7] reply to Martin’s question? 

Requirements exist to reduce development risk, or as Martin rightly says, the 
risk of not meeting the stakeholders’ desires and needs. They therefore add value 



to a project if the benefit of risk reduction exceeds their cost. [6] Further, Martin 
adds, we can assess the risk involved in an individual requirement based on its 
criticality and other factors – do we understand it, does this system need to 
obtain a safety certificate, and so on – and then we can make a triage decision. If 
the stakeholder is important or the impact of a failure on this requirement will be 
high, then it deserves high effort. [6] That Glinzian answer implies that every 
requirement should trace to a stakeholder – much as Richard Stevens used to say 
that every user requirement should begin with a named user role. [8] The answer 
also paradoxically implies that while risk is pervasive in RE, it should be treated 
implicitly: applying high effort and developing traceability are not overtly about 
risk.  

This paper looks at how RE addresses risk (section 2); how risks are made 
explicit in Systems Engineering in general (section 3); how risks can be 
modelled explicitly in RE (section 4); how RE typically handles risks implicitly, 
via traceability (section 5). The paper concludes with some brief reflections on 
requirements and risk (section 6). 

2. Addressing Risk 

How does RE, or for that matter systems or software engineering in general, act 
to reduce risk? Is it just a totem, an amulet, or are there reasons to believe it 
actually works?  

Consider a project that does not make any special effort to discover and trace 
its requirements. People intuit in a general sort of way what needs to be done. 
Engineers make drawings. Programmers write code. User interface designers 
sketch screens, design consoles. Workers cut metal. Electronics wizards make 
printed circuit boards. Eventually there’s something that looks like a system. A 
user tries to use it. Of course, it fails here, there and everywhere. Now, at what 
should be the quiet moment of handover, all kinds of “integration” problems 
arise: the subsystems do not fit together. Testing is, in fact, discovering missed 
requirements at all levels: component, subsystem, system, even user – for when 
users experience a new system for the first time, they immediately notice 
features that they would like to add. Supposedly final delivery becomes first 
prototype, first iteration. This can be extremely expensive, at least on large 
projects.  

Firstly, all the work done on the basis of the misunderstood, undocumented, 
or undiscovered requirements must be redone, so the project has conducted 
nugatory work.  

Secondly, project teams grow with time. By the stage of actually 
manufacturing hardware, or of detailed design and coding, every day on the 
project costs many salaries: there is a large “marching army” cost to doing 
anything. It is therefore an extremely expensive time to make any changes, let 
alone to start again on all the requirements.  

Therefore, projects are wise to select a suitable development life-cycle, with 
carefully-orchestrated phases specifically designed to reduce risk. Activities are 
selected to control the risks associated with the project’s situation. For example, 
if there is a large technological risk because an organisation is trying a new 
technology for the first time, feasibility prototyping and development of 
technology demonstrators is justified. [9] These activities, these life-cycles, have 
the explicit purpose of discovering problems early, when they can be resolved 
cheaply – if need be by cancelling the project, but more likely by selecting 
design options that can be seen to work and are known to satisfy stakeholders’ 
goals.  

If we assume for the sake of argument that a given project has a certain 
number of problems to overcome, that project can be imagined to have two 
choices. It can leave things to chance, in which case it will discover the problems 
late. Or it can conduct risk-reducing, requirement-discovering activities early in 
the life-cycle, in which case it will discover many of the problems early. Since 
costs rise steeply with phase in the so-called 1:10:100 rule – perhaps 1 unit of 
work is needed to discover requirements, 10 to design from it, and 100 for code, 



manufacture, and test [10] – the early approach is much less costly. Since risks 
such as of embarrassing project and public relations disaster similarly rise 
steeply when problems occur late and large, the early approach is also much less 
risky. In project planning jargon, where time is shown as the X-axis on charts 
and early is on the left, systems engineering offers a welcome “left-shift” in 
problem discovery and resolution. Hence, large projects should, amongst other 
things, engineer their requirements. 

Not everybody believes this. Small projects may escape the logic. And 
traditionally, many systems were produced with few explicit requirements – 
design drawings were enough. The 1956 model of car was the same as the 1955 
model, with somewhat larger tail fins, somewhat more chrome plating, 
somewhat more exaggerated front and rear bumpers, somewhat more sculpted 
curves of the bodywork, a somewhat more finely tuned engine. This was 
Modification Engineering. It works very well – up to a point. It is unfortunately 
impossible to predict when that point is reached, when complexity suddenly tips 
projects into chaos. One project succeeds: the complexity proved containable. 
Another, that didn’t look so different, so much more complicated, fails 
catastrophically. Perhaps the elegant mathematics of chaos theory might be 
applied to project trajectories. At any rate, such variation in project outcome may 
explain why people are able to hold opposing beliefs about the need for 
requirements, and the underlying risks that they mitigate.  

3. Making Risks Explicit 

Risks can be handled in many different ways, generally by making them more 
explicit. It is notable that methods for discovering risks are often used by other 
disciplines than RE.  
Project managers typically maintain a Risk Register, a list of known risks that 
could derail the project. The response is to identify and carry out appropriate risk 
mitigation actions on the project, as well as to monitor the world for events 
outside the project’s control. Requirements risks are only one of several possible 
types that may afflict projects. Ian Sommerville, for example, lists technology 
risks, people risks, organisational risks, tools risks, requirements risks, and 
estimation risks. [11] This list, good as it is, itself carries with it the danger that 
the headings will divert attention away from other important risks that do not fit 
into any of these types. For instance, a product development project may succeed 
in creating a good working product, on time and to budget, but the product could 
fail on the market if a rival product comes to market earlier, or if market 
conditions change for the worse and consumers fail to buy the product. 
Managers need to be aware of such risks and to be ready to replan should the 
triggering events, which James Dewar calls “signposts”, in fact occur. [12]  

Safety engineers conduct a hazard identification process, often based on a list of 
known hazards, that is, things that specifically endanger safety. Hazards were 
historically often discovered when systems failed catastrophically, leading to 
death, injury, or destruction of property. The response was to extend the list of 
known hazards related to specific design elements, and to write safety standards 
– reusable quality requirements, often enshrined in law – to enforce safer 
systems. [13] For example, if you have a steam boiler which may explode, you 
must have boiler-specific safety requirements, now standardised, and enforced 
by government inspectors. Thus the BSI has a standard which “applies to water-
tube boilers with volumes in excess of two litres for the generation of steam, 
and/or hot water at an allowable pressure greater than 0,5 bar and with a 
temperature in excess of 110 °C as well as auxiliary installations (other plant 
equipment).” [14] You couldn’t have a clearer case of requirements coming from 
design, rather than the other way around.  

Security engineers similarly base their requirements on threat analysis, often 
based on lists of known threats. These too, unfortunately, were often discovered 
the hard way. The reason is simple enough: while the goal for security is simple 
(be secure), achieving it is anything but. As with safety, the necessary 



requirements depend intimately on the details of the design. For example, if you 
have a connection to the internet, which may bring hackers, trojans and viruses, 
you need specific mechanisms such as a firewall and an anti-virus tool. The 
presence of risk here is unmistakable: ticking all the boxes on the security 
counter-measures list is no guarantee there will not be a break-in.  

A complementary approach is to employ a “tiger team” with the explicit task 
of trying to break the security of the system under design. As Ian Sommerville 
says, “They simulate attacks on the system and use their ingenuity to discover 
new ways to compromise the system security”. [15] This is an interestingly 
Glinzian approach: if you can’t quantify your security formally, you can at least 
try it out operationally. Perhaps it’s what Martin would have written in [5] if 
security had been his focus.  
Systems engineers may, analogously, conduct a risk identification process. 
Responses can include continuing with the existing approach (risk acceptance); 
prototyping (risk exploration); changing the system and its specifications (risk 
mitigation, or perhaps risk prevention); and cancellation (risk avoidance). [16]  

Clearly this list could be extended to human factors and other areas.  
It is immediately apparent that by no means all the risks that project 

managers, safety engineers, security engineers and systems engineers can 
discover trace to users; just as by no means all system requirements trace to user 
requirements. Some, as we have just noticed, will trace to standards which 
enforce rules such as safety and security; others may simply be seen to be 
necessary during design. Requirements may also be driven by usability 
standards; rules limiting interference, like the radio regulations; and financial 
probity rules, which heavily influence software for banking and insurance. One 
can argue that requirements and matching risks of these kinds can be traced to 
stakeholders of type Regulator [17]; but if engineers identify a new risk, they 
still want to handle it appropriately, whether a regulator is involved or not.  

4. Modelling Risks 

The simplest kind of risk model is simply a list, which at least presents each risk 
openly as a traceable (numbered) item, and invites action on each item, with 
verification through traceability.  

The next logical step is to prioritise the list. Barry Boehm, for example, 
suggests identifying a top ten [18]; Sommerville observes that this might be the 
wrong number for any particular project. [11] 

A weakness of using a simple list of risks, prioritised or not, is that risks may 
not be independent, in which case it makes no sense to deal with them 
separately, one by one. Requirements analysis can model dependencies, as for 
chains of goals in i* [19] or for claims, arguments, and evidence (or simply 
assumptions) in safety and other rationale models [20] [21]. A goal modelling 
approach which essentially models threats and mitigations is misuse case 
analysis, which lends itself to simple graphical models. [22] [23]  

As with safety and security requirements, which are in practice handled not by 
requirements generalists but by safety or security engineers, so risk management 
has become a speciality of its own, with good books written by experts like 
Martyn Ould and Capers Jones. [24] [25] We may approve specialisation or 
deplore fragmentation, according to taste, but the effect is perhaps to remove 
overt consideration of risk from the world of engineering of requirements, 
software and systems to the world of experts in business risk, to the extent that 
the topic itself is unfamiliar to engineers. Perhaps, then, it may be worth 
reflecting on ways that risk can be handled in the context of requirements. 
Several such ways have already been mentioned more or less directly above.  



5. Handling Risks with Requirements 

 
Fig. 1. A Requirements Metamodel.  

Traces are shown as solid lines, logical relationships as dashed lines.  
Risk can be shown explicitly in Rationale, or as Threat; implicitly, it is 

pervasive. 

It may be as well to repeat, here, that all requirements work is done to manage 
risk. The list of specific techniques suggested here consists, therefore, of 
examples of risk management approaches using requirements. The examples are 
taken from the requirements metamodel of [26] (Figure 1).  
Note: The word “trace” as used below can be interpreted either literally, 
meaning actual database links between separate database records, or 
conceptually, meaning for example that a field is added to a table to include the 
“traced” facts, or simply that a reference is added in a document to indicate that 
the facts are connected.  

Risk of not discovering a key stakeholder: a systematic search can be made for 
possibly-involved people and organisations, whether these are involved in day-
to-day operations with the system or not.  

Risk of not attending adequately to stakeholders: user-derived requirements can 
explicitly be traced back to their stakeholders, who in turn can be analysed with 
an influence matrix. [27]  

Risk of paying attention to the problems you can solve, rather than the ones that 
stakeholders want solved: Verifiable requirements can trace back to not-
necessarily-deliverable stakeholder goals.  

Risk that system scope is not fully understood: model system context; validate 
context with stakeholders; trace scenarios to context elements (in and out 
interfaces); trace interfaces to design.  

Risk that goals cannot all be delivered together: use traces to show goal conflicts 
as well as goal contributions; model obstacles and threats as well as positive 
goals, and show the threatens/mitigates relationships between these.  

Risk that not all the important requirements can be delivered (on time, to 
budget): prioritise and trade-off the goals with the available solutions (design 
options).  
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Risk that requirements are gold-plated: prioritise; use traces to design to 
evaluate cost per requirement (impact analysis); use traces to stakeholder goals 
to see why each requirement must exist; use traces to scenarios (use cases, 
stories) to see how each requirement will be used; validate scenarios with 
stakeholders.  

Risk that stakeholders and project members interpret terms differently: trace 
terms used in requirements to project dictionary; validate dictionary with 
stakeholders. 

Risk that requirements are deleted to save time/money: trace to rationale to show 
why each requirement is needed in the system design, and why each trade-off 
decision was made. 

Risk that requirements are not fully and correctly implemented: trace to tests to 
ensure coverage; make each requirement atomic (separately testable as a single 
item); write measurable acceptance criteria for each requirement; use traces to 
scenarios to show how the requirements will work.  

Risk of not understanding complex risks: make an actual risk model to show the 
dependencies between risks, and if need be their quantitative relationships; trace 
risks in the model to requirements. Much the same applies to specialised 
approaches for safety, security, reliability and other system qualities (non-
functional requirements).  

Again, this list could be extended indefinitely, covering different authors’ 
metamodels and every requirements technique ever invented. 

6. Reflections on Requirements and Risk 

Some simple but striking observations can be made from this analysis.   
Risk is pervasive in requirements engineering: every model is created to 

reduce project risk.  
There is no separation of types of risk in the world; any type of risk – 

commercial, schedule, technical, stakeholder, safety, regulatory, market, … – 
can impinge on a project. Focussing on just some well-understood types of risk 
is itself risky.  

There is no guarantee that anybody’s checklist or risk procedure is complete.  
Traceability is the primary mechanism of requirements engineering, and the 

primary purpose of any worthwhile requirements tool. Traceability is 
accordingly the means by which requirements control risk.  

Complex traceability patterns are probably best represented graphically, in 
forms such as goal and rationale models. But this remains quite rare in industry, 
at least outside safety argumentation, where the need to describe complex chains 
of reasoning about handling risk is greatest.  

It’s all about risk, Mr Glinz.  
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