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Abstract 
Trading-off candidate designs against requirements is 

a critical activity for many projects. This is especially so 
where the goals of many stakeholders conflict, and 
therefore cannot all be satisfied.  

Traditionally, weighting has been used to try to 
combine scores on different criteria, so as to identify a 
winning design. However, this has a weak mathematical 
basis: criteria should be independent dimensions, and 
may be measured in different units.  

The statistical technique of Principal Components 
Analysis offers a robust approach: given clear data, it 
gives clear guidance, of the form: “if you prefer these 
criteria, you should favour these candidates”. Otherwise, 
it indicates that no guidance can be given. Either way, 
this rightly places responsibility for decision-making on 
human shoulders. The outcome is an improved trade-off 
process for projects.  

1 Introduction 
A basic challenge to projects is to identify the design 

that meets the requirements as well as possible. The 
process of matching design to requirements is called 
‘pushback’, ‘trade-off analysis’, or ‘optioneering’ in 
different industries, and ‘satisficing’ by researchers 
following Herbert Simon [1].  

 

Figure 1: Tramways in Crowded City Streets:  
Many Competing Constraints must be Traded-off 
Requirements may be boldly written as “The system 

shall…” imperatives. But reality stands as the proverbial 
‘immovable object’ between stakeholders and their goals, 

even if they all agree. When goals conflict, as they 
usually do with transport projects, trading-off alternative 
solutions becomes a central activity in the project.  

An earlier paper [2] recounts an experience in 
trading-off many competing constraints while choosing a 
tram route. Figure 1 shows several compromises in a 
street in Milan: trams are obliged to proceed “at walking 
pace”; the street is one-way because of the tram; there are 
no safety barriers between the tram and either motor 
traffic or pedestrians. That long-standing approach might 
not be acceptable in cities unfamiliar with trams. 

The problem of choosing a tram route under many 
stakeholder pressures is analogous to choosing a software 
architecture to simultaneously “satisfice” a set of desired 
qualities such as safety, availability, performance and 
scalability.  

Paper [2] described a pragmatic approach for the 
following reasons:  
i. The client wished to adopt a traditional approach to 

choosing a winning option, essentially by summing 
the scores awarded to an option on different criteria.  

ii. The client initially favoured an indefensible 
approach using a very weak form of weighting. This 
was replaced by a combination of triage (to reject 
unsuitable options) and hierarchical weighting (to 
combine scores in an auditable way).  

iii. The plausibility of the result was open to doubt, so it 
was checked with a sensitivity analysis, and it was 
found to be surprisingly stable. However, there are 
some persistent challenges to that approach, forming 
the problem that this paper aims to solve.  

This paper describes work done on two transport 
projects – follow-up analysis on [2], and new analysis on 
a different route to validate the approach. It is structured 
as follows: 

Section 2 states the problem. 
Section 3 describes the approach taken on the project. 
Section 4 discusses some possible conclusions. 

2 The Problem 
a) There is no mathematical basis for combining scores 

on different dimensions, especially if these are 
measured in different units (money, tons of C02, etc). 
If the assessment criteria are genuinely independent 
as they should be, then they represent different axes 
(X, Y, Z, etc in a multi-dimensional space), and 
cannot be added, with or without weights. More is 
said on this in Section 5. 

b) The organisation was uncomfortable with the use of 
weighting, as well it might be given the approach’s 



weak mathematical basis.  
c) Weighting has an odd status in transport planning.  

On the one hand it is a traditional practice. There is 
strong pressure in government guidance [3] to argue 
on the basis of objective figures – money (eg direct 
costs and net present values) where possible.  
On the other hand, there is explicit acknowledgement 
in the same government guidance that not everything 
can be reduced to costs, ie that there are multiple 
dimensions to an assessment.   

d) The fact that the sensitivity analysis showed that the 
result remained practically unchanged despite large 
perturbations of the weights was, on reflection, 
somewhat puzzling. If changing the weightings 
dramatically did not change the output, what was 
happening? To put it another way, if a sum depends 
on the numbers you put in, but changing them makes 
no difference, there has to be some explanation.  
Therefore, follow-up work was undertaken to re-

analyse the data, avoiding the use of weights. The 
challenge was threefold:  
a) to understand the earlier results,  
b) to see if they were valid, and in particular 
c) to identify an evaluation method, applicable to future 

projects, that was mathematically sound (and did not 
rely on tricks such as weighting).  

3 Approach Taken on the Project 
The starting-point was the re-examination of the data 

used in [2]. One source of discomfort was that any 
differences in outcome that would be predicted by 
individual criteria had been submerged by grouping 
criteria into standard “Objectives”. Therefore the criteria 
were used individually (Table 1).  

The scores were awarded by human experts (eg in 
town planning and the environment) on a scale from -3 to 
+3 (very poor to very good). For ease of analysis the 
scores are normalised to run from 0 to 6. Criteria that do 
not discriminate between the options are excluded. 

These data were then analysed using Principal 
Component Analysis (PCA). PCA is a proven statistical 
method for exploring the causes of variation in non-
parametric data [4].  

The basic idea of PCA is to treat each criterion as a 
separate, independent variable. Two variables can be 
plotted against each other on a sheet of paper, giving 
each variable an independent direction: one across the 
page (the X-axis); one up the page (the Y-axis).  Twenty-
six variables require a 26-dimensional space, which is 
hard to visualize but simple for PCA to analyse. It does 
not matter if some dimensions are less important than 
others: no weighting is involved. If, for instance, several 
Construction criteria were merged into one, detail would 
be lost but the results would otherwise be unaffected. The 
choice of criteria naturally reflects the concerns of 
informed stakeholders.   

The goal of PCA is to identify a small number of new 

variables that can more readily be understood than the 
large number of input variables – perhaps only two or 
three. This only makes sense when a few variables can be 
found that explain most of the variance in the input data.  

 

Criterion                        Option A B C D E F G 
Landscape 4 2 2 1 2 0 0 
Townscape 1 1 6 5 5 2 1 
Heritage 5 0 2 1 1 2 0 
Biodiversity 1 2 5 4 1 3 1 
Ambience of Tram Stops 4 5 1 2 2 4 4 
Whole-Life-Cost 2 6 4 0 0 5 5 
Business 4 5 0 2 2 4 4 
Value-to-Passengers 5 6 0 2 4 5 5 
Reliability 4 5 4 4 4 5 5 
Regeneration 5 5 4 5 5 5 5 
Section-12-Fire-Regs-Costs 6 6 6 0 0 6 6 
Safety 3 4 4 4 4 4 4 
Security 4 4 0 2 2 4 4 
Access 6 6 2 3 4 6 6 
Participation 6 6 0 5 6 6 6 
Interchange 6 6 0 4 4 6 6 
Land-Use-Policy 5 5 6 5 5 5 5 
Other-Policy 4 5 5 5 5 5 5 
Independence-of-Other-Projects 2 2 1 1 1 5 2 
Extensibility 6 6 2 0 0 5 5 
Site-Access 5 4 4 3 3 4 4 
Effect-on-Existing-Structures 5 2 3 4 4 4 4 
Construction-Disruption 4 2 2 0 0 2 2 
Effect-on-Utilities 5 2 3 1 1 3 3 
Construction-Duration 6 3 2 0 0 4 2 
Construction-Complexity 6 4 5 1 1 4 4 

Table 1: Raw Scores: Each Option on Each Criterion 
3.1 Principal Components Analysis (PCA) 

The procedure works like this: first, examine the 
cloud of points in multi- (in this case 26-) dimensional 
space. Draw a new line (an eigenvector) through the 
cloud’s longest axis to explain as much as possible of the 
variation (using the method of ‘single value 
decomposition’). The percentage of the total variation is 
the eigenvalue. Then, draw another new line, at right 
angles to the first new line, to explain as much as 
possible of the remaining variation. Continue in this way 
until effectively all the variation is explained.  

Draw a “scree plot” graph to show how much of the 
variance is explained by your eigenvectors (Figure 2). 
The eigenvectors are called “principal components”.   

 
Figure 2: Scree Plot  



Subjectively, statisticians simply discard any 
principal components after the “knee” in the graph, here 
clearly near the 3rd component. A rough-and-ready 
statistic called the Jolliffe cut-off can also be calculated 
to identify how many components can safely be used. 
Here the Jolliffe cut-off is 3.4, so there is probably little 
to be gained by examining more than the first 3 principal 
components.  Table 2 shows how much of the variance is 
explained by the first 6 components.  

 

PC Eigenvalue % Variance Cumulative % Variance 

1 64.8625 51.330  

2 30.6805 24.280 75.610 % explained 

3 19.6643 15.562 91.172 % explained 

4 6.9589 5.507 Below Jolliffe cut-off 

5 2.82429 2.235  

6 1.37228 1.086  

Table 2: Explaining the Variance 
In this case, PCA has “worked”: nearly all the 

variance is explained by the first 3 components.  

            Eigenvectors 

Criterion PC1 PC2 PC3 

Landscape -0.02542  0.2406 -0.3303 

Townscape  0.2903  0.05298 -0.02737 

Heritage -0.0724  0.2882 -0.3098 

Biodiversity  0.1771  0.1549  0.2317 

Ambience -0.268 -0.1063  0.06726 

Whole-Life-Cost -0.1661  0.06827  0.4377 

Business -0.259 -0.1556  0.01166 

Value-to-Passengers -0.2527 -0.1944 -0.04621 

Reliability -0.128 -0.1127  0.2424 

Regeneration -0.1167 -0.2321 -0.1581 

Section-12-Fire-Regs -0.2001  0.2409  0.2751 

Safety  0.07079 -0.1091  0.1807 

Security -0.2737 -0.1563 -0.03905 

Access -0.2791 -0.1128 -0.0086 

Participation -0.1841 -0.2962 -0.1962 

Interchange -0.2445 -0.2151 -0.09936 

Land-Use-Policy  0.08455  0.1682  0.1146 

Other-Policy  0.1097 -0.1691  0.2799 

Independence -0.1848 -0.03844  0.1624 

Extensibility -0.2801  0.1005  0.1333 

Site-Access -0.1599  0.2122 -0.0092 

Effect-on-Existing -0.04227  0.03422 -0.3839 

Construction-Disruption -0.2144  0.2845 -0.01234 

Effect-on-Utilities -0.1836  0.3008 -0.06917 

Construction-Duration -0.2404  0.2331 -0.04483 

Construction-Complex -0.1731  0.3258  0.1003 

Table 3: Eigenvectors Correlated with the Criteria 
The next step is to look at the first 3 components, and 

try to understand what (if anything) they mean in the real 
world (Table 3). 

It is difficult to pick out correlations from such a 
table. When there are only a few criteria, you can plot a 
bar graph of each one, and by lining up the graphs, may 
spot the winning option visually.  

A better approach for many criteria is to cluster the 
data by similarity. Figure 3 shows clusterings both of the 
Criteria, on the X-axis,  and of the Options on the Y-axis. 
(Standard Criteria like Noise that do not discriminate 
between options are shown here but not elsewhere.) 

The clustering of Options is useful, as it effectively 
gives guidance like “if you like Option E, you should 
also like Option D – closely similar to it – and Option C 
– the next closest”.  In the same way, Options B, F, and 
G are seen to be similar to each other, while A is a little 
further away. But it remains hard to pick out the reasons 
for these similarities and differences in terms of the 
Criteria. What we need is a reliable way to reduce the 
number of criteria without making dangerous 
assumptions.  

 

Figure 3: Cluster Analysis of Criteria and Options 
Fortunately, PCA offers just such an approach. Recall 

that the principal components are eigenvectors, newly-
drawn lines through the cloud of data points. The first 
two components explain three-quarters of the variation in 
the data. We can use them as our new X- and Y-axes, and 
project all the rest of the data – both Criteria and Options 
– on to that new plane (Figure 4). The Options are boldly 
labelled A, B, … G. The Criteria radiate from the origin. 



 

Figure 4: Criteria and Opt ions Projected on to the 
New Plane Defined by the First 2 Components 

 

The locations (correlations) of the Options in the 
X-Y-Z space defined by the first three principal 
components are shown in Table 4. Only the first two 
principal components (PC1 and PC2) are used in the X-Y 
plane of Figure 4.   

Option PC 1 PC 2 PC 3 

A -3.654  2.6647 -2.8278 

B -2.404 -1.0843  1.6644 

C  3.9844  3.7493  1.6366 

D  3.5815 -1.578 -0.93884 

E  2.7848 -2.0475 -1.7142 

F -2.3199 -0.52639  1.1981 

G -1.9728 -1.1779  0.98175 

Table 4: Option Co-ordinates  
in the Space Defined by the First 3 Components 

3.2 Interpreting the Results 
The statistics have now taken us as far as they can. 

Views like Figure 4 spread the options apart as widely as 
possible. Similar views can be prepared, using principal 
components 1 and 3, or 2 and 3, effectively looking at the 
cube of data from the side or the front rather than the top.  

The first task is to decide what the axes of Figure 4 
mean in the world. They are by definition not the same as 
any of our input criteria, so we have to examine the 
correlations – positive or negative – of the criteria with 
the axes, and imagine what the axes could mean.  

If we are lucky, PCA reveals something important 
about the world, or at least about how the experts who 
scored the options perceive the world. In that case, the 
axes may have a clear and definite interpretation.  

Indeed, if several projects involve similar kinds of 
trade-off, as could happen with some types of transport 
project, then it might be possible to score the options 
directly and efficiently on the newly-discovered axes. 
This would save the trouble of scoring the options on the 
large number of old criteria, which often correlate only 
weakly with the maximally discriminative axes.  

Component 1, the X-axis, is reasonably strongly 
correlated positively (to the right) with just one criterion, 
townscape. In the negative direction, there are several 
components like value to business, value to passengers, 
and interchange, which all have to do with the usefulness 
of an option. This could be called the “Usefulness—
Townscape Axis”.  

Component 2, the Y-axis of Figure 4, similarly 
correlates negatively with several social value criteria, 
and positively with several buildability criteria, as shown 
in Table 2. This could be called the “Social Value—
Buildability Axis”.  

Armed with this understanding, the next task is to 
look at the trade-offs in the light of the statistical analysis 
displayed in Figure 4.  

Essentially the positions of the Options A..G on our 
two newly-named Axes say: 

(i) “If you prefer townscape to usefulness, you should 
choose among the options C, D, or E; if not, you should 
choose from A, B, F, G.” and 

(ii) “If you prefer buildability to social value, you 
should choose options A or C; if not, you should choose 
from B, F, G, D, or E.” 

This places responsibility for the final decision firmly 
on human shoulders: there is no mathematical reason to 
favour townscape, buildability or any other criterion.  

On the other hand, the statistical analysis does say 
quite clearly that if you think social value and usefulness 
the most important considerations, it is illogical of you to 
choose option C, for instance.  
3.3 Reinterpreting the Results of Weighting 

The final step in this analysis is to reflect the findings 
back on to the earlier work [1], done without the benefit 
of PCA, and to reinterpret what happened then. The 
recommendations in [1] were that Option A should win, 



followed by Option B and then Option C. This looks 
surprising in the light of PCA, for the following reasons:  
• If Option A is preferred because of its buildability, 

then Option C should have been close to it, or indeed 
preferred to it; no other option should have come 
close, so the choice of third place could have gone 
anywhere (F, B, G, D, or E).  

• On the other hand, if Options A and B were 
preferred because of their usefulness, then third 
place should have gone to Option F or G; Option C 
should have been placed last.  

• Either way, if B is considered a good second-placed 
candidate, then F and G, which are very similar to B, 
should probably have been placed 3rd and 4th.  

A more complex position is also possible: perhaps A won 
because it scored best on both Buildability and 
Usefulness. In that case, we can imagine contours of 
merit running diagonally across Figure 4: A is at the top 
of the slope, and D and E are at the bottom. In that case, 
B, F, G, and C might perhaps get similar scores, half-way 
down the slope. The only problem with this is that ‘social 
value’ must then be rated highly, but ‘usefulness’ must 
be low, which is not easy to reconcile as the groups of 
criteria feel similar.  
3.4 Reinterpreting the Sensitivity Analysis 

One mystery with the earlier work is resolved by the 
new analysis. That was, that sensitivity analysis which 
made very large variations in the assigned weights made 
little difference to the outcome – A or B came first 
almost regardless of changes in weights.  

The explanation is that the sensitivity analysis 
explored the group weightings as opposed to the weights 
on individual criteria. Varying the weight of a whole 
group could reduce the positive effect of one criterion, 
but also the negative effect of another criterion – which 
would thus “cancel out”. Within the Environment group, 
for instance, Biodiversity and Ambience pull in opposite 
directions on the first two principal components.  

A much larger sensitivity analysis, working with 
individual criteria, could in theory have discovered this 
effect. Unfortunately, with so many criteria to consider, 
simply varying one out of many criteria might have little 
effect; to explore sensitivity properly, one ought to vary 
many combinations of weights of criteria – a daunting 
task unless automated. PCA side-steps the difficulty.  
3.5 Validating the Approach on a Second Project 

The last step was to apply the technique to a different 
project, to see if it gave a sensible result there. The 
opportunity arose to review a rapid transit project.  

That project triaged out several options as wholly 
unsuitable (‘hard’ triage) or much less good on key 
criteria (‘soft’ triage). This left just 4 routes for detailed 
optioneering. The project found these hard to separate, 
but judged routes A and B preferable to C and D.  

Data preparation and PCA took only half a day, 
leading to the results in Figure 5. Options C and D prove 

to be very similar to each other; options A and B are 
more distinct. The criteria form no visible pattern (unlike 
Figure 4) but radiate around the graph, though more 
criteria favour Options A and B than Options C and D.  

 

Figure 5: Applying PCA to a Second Project 
Data Presentation as Figure 4 

These findings suggest that the project was right: the 
remaining options are not very different, and any of them 
could form an acceptable solution. However, Options A 
and B may be the best. Interestingly, A had most public 
support, as the route runs along a residential road, 
offering a convenient transport service. In contrast, B 
runs through an industrial zone, and so had the least 
harmful impact on townscape and public open space. 
Perhaps these are the decisive issues in this case. PCA 
appears to have homed in on the essence of the project. 

4 Discussion 

4.1 A Reason for Discomfort 
It is satisfying to arrive at a simple, general, method 

that effectively explains one’s discomfort with an earlier 
approach, mathematically and graphically. The 
hierarchical grouping of criteria, essential to the balanced 
allocation of weights, had masked genuine differences 
between the options. Further, the essence of any 
weighting method is to melt down all differences in all 
dimensions to one score or figure of merit. “You are 
blending all the colours down to a greyish-brown mush”, 
as one colleague expressed it.  This applies even to 
mathematically sophisticated techniques such as the 
Analytic Hierarchy Process (AHP) [7] which computes 
weights from human pairwise comparison of criteria.  

PCA showed that there were real differences which 
had been missed by the weighting approach. If option B 
was considered best, then option C should not have been 
picked as runner-up: options F and G were closest to B, 
while C was far away. This was reason enough to feel 
unhappy with the old approach; and conversely, to feel 
that with PCA, it was finally possible to understand what 



was happening. Paradoxically, hierarchical weighting had 
been adopted because it seemed more objective.  
4.2 PCA: A Modest Method 

PCA implies a somewhat modest method. 
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Firstly, PCA is not a silver bullet. It is an old and 
reliable statistical method. But it does not guarantee to 
find a result: indeed, there is no assurance that it will help 
at all on some evaluations, particularly where the scores 
pull in different directions.  
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Figure 6: When PCA does not help 

Fortunately, it is straightforward to tell when PCA is 
not working: there are many principal components of 
similar size, so the first few components only account for 
a small part of the variance (Figure 6). That is a warning 
that decision-making will be difficult, that many factors 
must be compared, and that mathematics cannot help.  

It is hard to avoid the conclusion, reflecting on the 
way that PCA works, and the meaning of Figure 5 for 
example, that approaches such as weighting, which 
attempt to extract an automatic answer from a complex 
cloud of conflicting factors, are unjustifiable. That in turn 
probably rules out a Shortest Path or Travelling Salesman 
algorithm to combine scores on route segments.  

From a wider perspective, this result points to the 
need for a Soft Systems approach, eg Checkland’s [8]. 
Option selection is part of a larger process of solving 
complex business problems. That involves human 
activities like consultation, reflection, explanation and 
decision-making. These can be supported by analysis and 
modelling, but never replaced by them. Engineering 
recommendations exist in the context of politics, 
economics, and social and environmental concerns.  
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Secondly, using PCA recalls to mind the mining proverb: 
“When the miner strikes gold, he throws away his tools”. 
When PCA works well, it shows clearly what choices 
must be made. Then the mathematical tools must be 
thrown away, and human responsibility shouldered. 
Trade-offs are painful; every choice comes at a price in 
dissatisfied stakeholder goals. Perhaps uncomfortable 
responsibility is the true meaning of “satisficing”: PCA 
provides evidence to support a decision. But it offers no 
easy “proof” to hide behind. 

4.3 A Process Outcome 
A desirable outcome of the work is that the 

organisation’s process manual has been updated, 
downplaying the use of weights and suggesting the use of 

a) selection of the most appropriate evaluation criteria 
for each project, by customising a standard list 

b) independent scoring of each option on each criterion 
c) statistical analysis to show the differences between 

the scored options 
d) human evaluation of the (statistical) findings.  

This is part of a larger process which includes an 
initial feasibility study and cost/benefit analysis. Possible 
solutions – in the case of a tram, candidate routes – are 
then developed. Routes which face major obstacles are 
triaged out, though the reasons for their rejection must 
still be carefully documented to demonstrate fairness.  

Triage in this sense is closer to the original medical 
usage – sorting patients into a small number of categories 
to be treated urgently, later, or not at all – than to that in 
[5] which seems unnecessarily to equate triage with 
prioritisation in general. However, [6] reverts to a more 
traditional understanding, seeing triage as the desired 
sorting-into-groups outcome, for which the prioritisation 
of requirements may be an input.  

Evaluation of many route options by experts against a 
battery of 30 or more criteria is slow and costly. Since, as 
explained in [2], the number of route options expands 
combinatorially, early triage to reject unworkable route 
segments can bring large savings.  

Statistical analysis of the findings by PCA is quick 
and cheap. While the results of PCA require some skill to 
interpret [9], the approach described here is robust, 
widely applicable to the trade-off problem, and promises 
to be extremely cost-effective.  
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