Does Requirements Elicitation Apply
to Open Source Development?

Ian Alexander

http.//www.scenarioplus.org.uk

Abstract

This paper considers whether requirements elicitation applies to Open-Source
Development (OSD). It first looks at traditional "Cathedral" software development versus
"Bazaar" style OSD, following Eric Raymond. It then considers two traditional cases:
single client/single supplier/custom system; and mass market/product company/product
line. Using a template, these are compared as ways of delivering what people want,
leading to the question of how each development approach actually finds out what is
wanted. The paper ends by suggesting ways in which OSD’s requirement approach is
distinctive.

Introduction: The Cathedral and the Bazaar

Eric S. Raymond [1] describes classical software development as like the building of a
cathedral “carefully crafted by individual wizards or small bands of mages working in
splendid isolation”. The picture is of an imagined hierarchy of (possibly self-appointed)
specialists with sharply-demarcated roles, collaborating in an elaborately-defined process
under central control.

Presumably the wizards have been trained to follow traditional alchemical recipes for
Requirements Elicitation (RE), using techniques such as interviewing and running
workshops. Presumably, too, the bands of mages then produce impressive-looking
specifications on scrolls of parchment, illuminated with elegantly incomprehensible
diagrams in UML and other hieroglyphic scripts.

In contrast, Raymond describes open source development as “a great babbling bazaar
of differing agendas and approaches”. The picture is of a busy marketplace in which
many buyers and sellers briefly meet, each following his own agenda; but, amidst the
confusion, business is done.

Presumably the market traders and customers confine their written communications
mainly to terse shopping-lists, with the occasional invoice and special order. Elicitation, if
it occurs at all, probably takes the form of brief inquiries about the customer’s health
and whether he or she would like anything else with that.

Raymond’s point, of course, is that Open-Source Development (OSD) is very light on
both the roles and the processes, including RE, which encumber traditional software
development. The nature of RE for OSD has not been examined very closely, though
Lisa Henderson [2] suggests some RE techniques that she feels should be applied.

Raymond poses a serious challenge: does RE apply to open-source at all, and if so,
how? This paper attempts an answer.

The paper is structured as follows:

e Firstly, it looks at the problem of comparing RE processes, and presents a
process template as a framework for comparison.

e Then, it looks at three cases including OSD, to see how — if at all — it relates to
traditional RE.

e Finally, it considers what is distinctive about OSD.

A Requirements Elicitation Process Template

Requirements Elicitation (RE) processes differ in so many ways that they are hard to
compare, and there is no generally-agreed framework for the purpose.

For example, Al Davis [3] proposes 201 Principles of Software Development, a
dauntingly large number. Kotonya and Sommerville [4] describe a set of “Requirements
Engineering Processes” in chapter 2 of their book on that subject.

A radically different process, derived from the tradition of Interaction Design rather than
software or systems analysis, is Beyer and Holtzblatt's Contextual Design [5]. 1t is based

on close study of the nature of work in an organisation, identifying the roles and
interactions involved, even the physical layout of an office; and from there, developing
stories or storyboards of how the work might better be conducted.

These examples could readily be multiplied. Authors in industry and academia have
proposed requirements processes centred on essentially any and all elements of
requirements work. Each has both strengths and weaknesses (Table 1). Alexander and
Beus-Dukic [6] suggest that such processes should be seen not as competing
approaches but as building blocks for any satisfactory requirements process.

Table 1: Competing Requirements Elicitation Processes

Process Basis

How it Describes Need

Schools of Thought

Disadvantages

Stakeholder Political, economic, social, | Soft Systems Methodology Unverifiable; unsuitable for
Analysis and cultural drivers contracts

Goal Says what stakeholders KAOS; Ignores timing relationships
Modelling want * (scenarios) between goals
Event-Driven Identifies events at Event-Driven methods Ignores soft systems issues and

Analysis interfaces conflicting stakeholder goals

Scenario Says how design will Cockburn-style Use Cases; Over-emphasises behaviour;

Analysis deliver results to humans | Agile (user stories) ignores non-functional aspects

Standards & Defines typical non- Standardization, Regulation, | Does not cover functions and

Templates functional requirements Quiality Assurance innovative behaviour

Rationale Explains why design is Compendium; Ignores timing; risk of rationalizing

Modelling needed (eg for safety) GSN, CAE (for safety) an already-chosen solution

Data Defines data, rules and UML class modelling; entity- | Lack of end-to-end vision, context,

Modelling relationships relationship modelling purpose

Measurement | Shows what results the Traditional * 7he system Whole burden carried by text; lack
design must provide shall... “requirements of context, scenarios

Priorities, Most profitable or most Business Case; Benefit/Cost | Ignores context, purpose, qualities,

Trade-offs needed features Analysis; Value Engineering constraints, non-financial aspects

In this view, requirement elements such as goals, scenarios and measurements are
candidates for inclusion (as agreed types of work product) in each project’s
requirements elicitation process. They form one dimension of a project. Another
dimension is formed by the set of discovery contexts that a project chooses for itself
(Table 2) [6].

Table 2: The Scenario Plus Requirements Elicitation Process Template

Requirement 3
c
Elements ©
whd
()]
1 Visi 3
ision S P
@ T =
(7} < w 9
(1] (0]
S)] o ()] c £ O
[<] -l>-<' g ol ® 8 Q|5
. = 2 B8 =B & £ 3 |T
Discovery Q v 8 g =0 e| @0l o
s 8 5 8 %% § 8 &
9]
Contexts h 6/ S| R & & a =g
N M| 1| O N O & H

A From Individuals
Interview
Observation
Apprenticeship

B From Groups
Workshop
Remote Meeting

C From Things
Prototyping
Archaeology
Analogy
Reuse

D From Trade-Offs

Requirements can be discovered in many contexts, from traditional face-to-face
elicitation in individual interviews or group workshops, through recycling by sifting
“archaeologically” through old specifications, memos and product manuals, to more
fashionable exploration by prototyping and reuse from carefully-crafted product line
databases.

Table 2 presents a fresh view, a matrix, of a project’s requirements approach. A project
may choose any combination of elements to define its needs; and may make use of any
combination of contexts in which to discover those elements. Indeed, the classification
of both elements and contexts is painted with a very broad brush: each of the cells of
the matrix could be broken down into many smaller cells if desired. An almost unlimited
number of requirements approaches could be defined as patterns of filled cells in the
matrix. Let us use the template to characterize OSD and more traditional approaches:
perhaps then the similarities and differences will become visible.

Three Cases Compared

Developing a System for one Customer

The classic “cathedral” process is perhaps most evident in large custom development
projects, when a large systems house, possibly with many subcontractors, creates a
one-off system specifically for a single large client organization. It could for instance be
an information system for a government department; a ship with all its control software
for the navy; a transaction-processing system for a bank.

The client and contractor work together in what may be a large interview campaign to
define the stakeholders concerned, and their goals. Group workshops are held to define
the system’s context, interfaces, and scope, and to sketch the scenarios that must be
covered. Prototypes may suggest further goals and scenarios; templates, standards and
regulations suggest desirable or mandatory qualities and constraints (types of non-
functional requirement). Design studies identify candidate approaches; these are
carefully evaluated, and the resulting trade-offs show which goals can be afforded, and
what the priorities of the project must be (Table 3). Very careful analysis leads to
detailed system and subsystem specifications with contractually-enforced measurements
(verification methods and acceptance criteria), and in turn these lead to system and
subsystem tests. The components of the system are constructed, integrated, and tested
to show they, and ultimately the entire system, meet the specifications.

Table 3: Large-Scale Custom Development Process

Requirement 3
c
Elements '®
whd
()]
1 Visi g
ision S 9
p T g
()] m©)] v 7))
.~ n o £ E 9
— [=))] -_— o (7] "—
(=] L o - Q (11 1 fusl wd
) < X | = 5| € 2| 3|
Discovery Qv B B = o6 £ @l o
Context | 3 g o S :E % 5 E
ontexts i o
w| 0 0 v O x| o 2| o
| n O N 0| =

(o]
A From Individuals -- ----
B From Groups -- --

C From Things

Bl
D From Trade-Offs --- - --

This process is slow, labour-intensive, costly, and hard to modify once it is under way,
especially when there are many subcontracts. These are considerable disadvantages. It
is however not easy to see how complex and specialised systems comprising many
linked hardware and software components can be developed without contracts.

The resulting pattern, as shown in Table 3, can vary widely. For example, some projects
carefully justify decisions with a documented rationale, whether as a brief text with each
requirement, traces to goals and assumptions, or detailed modelling.

4

A railway company, for instance, drives its requirements from a risk model: changes to
requirements, and hence to systems, are fundamentally to make the railway safer.
Hence, rationale, measurements and priorities are based on trade-offs. Other industries
work in quite different ways; and similar examples could be given for other requirement
elements.

But it is probably fair to say that the large-scale custom development pattern is
characterized by a rich mixture of both requirement elements and discovery contexts —
many cells in the matrix, and most likely all rows and columns, will be populated.

Open Source Development

In contrast, open-source development may involve just a few individuals, perhaps with
some sponsoring organisations, working to code and test components to achieve very
briefly-stated goals (though probably without any such pompous RE language). There
may be practically nothing that looks like a specification document, let alone models or
analyses.

There may be nothing that an outsider would consider “elicitation” either. Individuals
may meet and chat over a coffee at a conference, or more likely may communicate over
the Internet — by any means such as email, instant messaging, wiki, or discussion
group. This dialogue may be hard to characterize as either individual interview or group
workshop: it may be informal and unstructured even in terms of the number of
participants. So we arrive almost by elimination at a nearly empty RE process matrix
(Table 4). This looks like a very poor match between the RE and OSD world-views.

Table 4: Open-Source Development Process (* = informal)

Requirement g
c
Elements ©
hed
()]
1 Visi g
ision S P
4 = c
] < o
]] 0
o 7)) " ()] c E o
o | 2l 0| ® L 2 5
— b
) < X =35 €| £ 35|t
Discovery g T 8l =/ e @ o
£ 25 8 8% 5 8z
O
N (1| O N 0 & A

A From Individuals
Interview
Observation
Apprenticeship
B From Groups
Workshop
Remote Meeting
C From Things
D From Trade-Offs

H 3 Goals

HH

Managing a Product Line

However, there may be a better parallel for OSD than large-scale custom development
projects. A product line is a set of related products which typically evolve over time, and
which often comprise many features shared between a range of products which may
address different market sectors.

A mobile phone maker, for instance, may produce cheap handsets for the pay-as-you-go
market; middling handsets for average consumers; and powerful devices for the
business and early adopter markets.

Managing such a product line is not easy. New products must be launched every few
months. Luxury features must quickly migrate to middling and then commaodity
products; new features must constantly be identified, developed and tested.

There is no single, rich, willing client (as with custom development for the navy or a
bank) to elicit requirements from. Instead, there is the market: a complex, diverse,
fickle mass of opportunities and risks. The product line company must develop many
successful features and integrate them into many products. Such features are developed
at risk, based on what the Product Manager believes the market wants. That belief
should be based on as much evidence as possible — given limited time, and the need for
secrecy. Discovery contexts such as prototyping and observation may be employed.

A product line company and its products are exposed to vigorous Darwinian competition
[7]. Some elements of the biological nature of this process are illustrated in Table 5.

Table 5: Comparison of Product and Biological Evolution

Biological Evolution Product Evolution
Mutation Invention of Features
Species Product
Natural Selection by survival of the | Selection by purchase of the most popular
fittest individuals types of product
Individual Product Variant

Speciation by evolution of isolated | Creation of new Products by choice of
populations combinations of new and existing Features

Products and Product Lines are managed centrally on behalf of the mass-market by
Product Managers. They thus have a dual role: to represent the company so as to make
a profit; and to represent the mass-market, so as to create products that meet genuine
market needs. These roles are to a degree in conflict, but good understanding of the
market should also be good for the company.

A product line process may to an extent resemble custom development in having a
complex pattern of requirement elements and contexts, but in essence it has much in
common with the conversational nature of open-source RE. Its primary task is to predict
products and features that the mass-market will like (i.e. to discover goals) and to
develop these in acceptable cost, risk, and time (i.e. choosing priorities based on trade-
offs). Given the resources of a product line company and the size of the risks involved, it
may well formalize these activities rigorously.

Conclusion: What is Distinctive about OSD?

Raymond is surely right: traditional RE and other software processes apply very poorly
to OSD. However, perhaps if he had looked at product-line rather than custom software
development, he would have noticed rather more similarities (Table 6).

Table 6: Comparison of Software Development Processes

Custom System

Product-Line

Open-Source

representatives,
safety specialists, etc

etc

Source of Client and other Mass-market Mass-market
Requirements | stakeholders

Stakeholder Analysts, developers, | Product Managers, (Volunteer)
Roles testers, user developers, testers, | developers,

interested users

Documentation

‘User’ and ‘System’
requirements
documents, test
specifications, etc

Product
requirements,
business case, etc

Informal
communications,
Wikis, discussion
groups

Organization

Client, Contractor

Product Company

Freelance, etc

Funding Development and Capital Possibly none;
Maintenance (small-scale)
Contracts sponsorship, etc

Key Scenarios, Goals, Goals

Requirement Measurements Trade-Offs

Elements

Key Interviews, Prototyping, Internet-mediated

Discovery Workshops, Observation, dialogue

Contexts Reuse, etc etc

Despite the parallels with product-line development, OSD remains a distinctively informal
approach to RE, and to software development in general. Successes such as Mozilla
(Firefox) show that it has something special to offer: it occupies a unique market niche.

Clearly, evolution (see Table 5) applies to open-source software just as much as to
products intended for the mass-market. Natural selection operates whether or not the
selection mechanism involves purchase: the market makes its choices. Popular open-
source software may evolve rapidly, and may quickly capture a large market share.
Commercial interests may be involved, as when variants of Linux are commercially
supported: open-source does not equal freeware.

Perhaps the most distinctive feature of OSD’s requirements process is a strongly reduced
emphasis on documentation, and on stakeholder roles.

Historically, OSD emphasized introspection rather than requirements elicitation. The
developer naturally had a software developer’s mindset, and developed tools suitable for
software developers. In general, the assumption that product users are like developers

is false: people are all different. But if you develop development tools, the assumption
holds, to a degree.

A prediction, therefore, is that as OSD moves out of its “comfort zone” into products for
a wider market, there will be more emphasis on elicitation, including a wider range of
techniques. This will presumably mean some convergence with conventional RE. For
example, scenarios (including user stories and use cases) may in future be used more
widely in OSD.

Since informality is central to OSD, it does not seem likely that it will adopt heavily-
structured RE techniques or documentation “any time soon”. On the other hand, as it
becomes more successful, open-source projects will grow, and there will be an increased
need for properly documented requirement baselines to work from.

References

[1] Eric S. Raymond, The Cathedral and the Bazaar, Musings on Linux and Open Source
by an Accidental Revolutionary, O'Reilly, 1999.

[2] Lisa G.R. Henderson, Requirements Elicitation in Open-Source Programs, CrossTalk,
July 2000, www.stsc.hill.af.mil/crosstalk/2000/07/henderson.html

[3] Al Davis, 201 Principles of Software Development, McGraw Hill, 1995.

[4] Gerald Kotonya and Ian Sommerville, Requirements Engineering, Processes and
Technigues, Wiley, 1998.

[5] Hugh Beyer and Karen Holtzblatt, Contextual Design, Defining Customer-Centered
Systems, Morgan Kaufmann, 1998.

[6] Ian F. Alexander and Ljerka Beus-Dukic, Discovering Requirements, Wiley, 2009 (in
press).

[7] Charles Darwin, On the Origin of Species by Means of Natural Selection, or the
Preservation of Favoured Races in the Struggle for Life, John Murray, 1859.

